题目内容
已知函数f(x+1)=x2+x,求函数f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:令t=x+1,则x=t-1,利用换元法,可得函数解析式.
解答:
解:令t=x+1,
则x=t-1,
∵f(x+1)=x2+x,
∴f(t)=(t-1)2+t-1,
∴f(x)=x2-x.
则x=t-1,
∵f(x+1)=x2+x,
∴f(t)=(t-1)2+t-1,
∴f(x)=x2-x.
点评:本题考查的知识点是函数解析式的求解及常用方法,熟练掌握换元法求解析式的格式和步骤是解答的关键.
练习册系列答案
相关题目