题目内容

4.(1)求$f(x)=tan(3x-\frac{π}{4})$的定义域
(2)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0).

分析 (1)根据正切函数的定义,令3x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$求出x的取值范围即可;
(2)由图象求出函数的解析式,再计算f(0)的值.

解答 解:(1)∵f(x)=tan(3x-$\frac{π}{4}$),
∴3x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈Z;
解得x≠$\frac{kπ}{3}$+$\frac{π}{4}$,k∈Z;
故函数f(x)=tan(3x-$\frac{π}{4}$)的定义域为{x|x≠$\frac{kπ}{3}$+$\frac{π}{4}$,k∈Z};
(2)由图可知,A=$\sqrt{2}$,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,又T=$\frac{2π}{ω}$(ω>0),
∴ω=2.
又函数图象经过点($\frac{π}{3}$,0),
∴2×$\frac{π}{3}$+φ=2kπ+π,
∴φ=2kπ+$\frac{π}{3}$(k∈Z),
∴函数的解析式为:f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),
∴f(0)=$\sqrt{2}$sin$\frac{π}{3}$=$\frac{\sqrt{6}}{2}$.

点评 本题考查了三角函数的定义、图象与性质的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网