题目内容

己知P是椭圆
x2
4
+y2=1上一点,F1,F2是椭圆的左右焦点,∠F1PF2=90°,则△F1PF2的面积(  )
A、1B、2C、3D、4
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由椭圆的定义可得 m+n=2a=4①,Rt△F1PF2中,由勾股定理可得m2+n2=12②,由①②可得m•n的值,利用△F1PF2的面积是
1
2
m•n求得结果.
解答: 解:由椭圆的方程可得 a=2,b=1,c=
3
,令|F1P|=m、|PF2|=n,
由椭圆的定义可得 m+n=2a=4①,
Rt△F1PF2 中,由勾股定理可得(2c)2=m2+n2,m2+n2=12②,由①②可得mn=2,
∴△F1PF2的面积是
1
2
m•n=1.
故选:A.
点评:本题考查三角形面积的计算,考查椭圆的定义,考查勾股定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网