题目内容
求证:(1-
)(1-
)…(1-
)>
,(n∈N+)
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
考点:不等式的证明
专题:点列、递归数列与数学归纳法,不等式的解法及应用
分析:本题可以用数学归纳法证明命题:(1-
)(1-
)…(1-
)≥
(1+
)成立,再用放缩法得到原命题成立.
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
解答:
证明:
先证:(1-
)(1-
)…(1-
)≥
(1+
),(n∈N+) …①
(数学归纳法)
证明:(1)当n=1时,
①式左边=1-
=
,
①式右边=
(1+
)=
×
=
,
∴左边=右边,不等式①成立.
当n=2时,
①式左边=(1-
)(1-
)=
×
=
,
①式右边=
(1+
)=
×
=
=
,
∵
>
,
∴左边>右边,不等式①成立.
(2)当n=k(k≥2,k∈N*)时,不等式①成立,
即(1-
)(1-
)…(1-
)≥
(1+
),(n∈N+)
则当n=k+1时,
有(1-
)(1-
)…(1-
)(1-
)≥
(1+
)(1-
)=
(1+
-
-
)>
(1+
),
即n=k+1时,不等式①也成立.
由(1)(2)知:(1-
)(1-
)…(1-
)≥
(1+
),(n∈N+).
∴(1-
)(1-
)…(1-
)≥
(1+
)>
,(n∈N+).
即原不等式成立.
先证:(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
(数学归纳法)
证明:(1)当n=1时,
①式左边=1-
| 1 |
| 3 |
| 2 |
| 3 |
①式右边=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 3 |
∴左边=右边,不等式①成立.
当n=2时,
①式左边=(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 2 |
| 3 |
| 8 |
| 9 |
| 16 |
| 27 |
①式右边=
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 2 |
| 10 |
| 9 |
| 5 |
| 9 |
| 15 |
| 27 |
∵
| 16 |
| 27 |
| 15 |
| 27 |
∴左边>右边,不等式①成立.
(2)当n=k(k≥2,k∈N*)时,不等式①成立,
即(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3k |
| 1 |
| 2 |
| 1 |
| 3k |
则当n=k+1时,
有(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 32k+1 |
| 1 |
| 2 |
| 1 |
| 3k+1 |
即n=k+1时,不等式①也成立.
由(1)(2)知:(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
∴(1-
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n |
| 1 |
| 2 |
即原不等式成立.
点评:本题考查了数学归纳法和放缩法,本题的难点在于命题①呈现,思维难度大,属于难题.
练习册系列答案
相关题目