题目内容

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.

分析 单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,不妨设$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$=x($\overrightarrow{a}-\overrightarrow{c}$)+y$(\overrightarrow{b}-\overrightarrow{c}$)+$\overrightarrow{c}$=(-$\frac{3}{2}x+\frac{1}{2}$,$\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$),
则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|2=(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2,再利用柯西不等式求解.

解答 解:单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,不妨设$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)(如图),
x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$=x($\overrightarrow{a}-\overrightarrow{c}$)+y$(\overrightarrow{b}-\overrightarrow{c}$)+$\overrightarrow{c}$=(-$\frac{3}{2}x+\frac{1}{2}$,$\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$),
∴|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|2=(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2
由柯西不等式得=[(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2]•[($\sqrt{3}$)2+32]≥[$\sqrt{3}$(-$\frac{3}{2}x+\frac{1}{2}$)+3($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)]2=(3$\sqrt{3}$y-$\sqrt{3}$)2
∵$\frac{1}{2}$≤y≤1,∴y=$\frac{1}{2}$时,(-$\frac{3}{2}$x+$\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}$)2最小为$\frac{1}{16}$
则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了向量的模的取值范围的求法,考查了不等式的性质,转化思想,属于中档题.

练习册系列答案
相关题目
19.某公司为确定下一年度投入某种产品的宣传费,需要了解年宣传费x(单位:千元)对年销量y(单位:)和利润z(单位:千元)的影响,对近8年的宣传费xi(i=1,2,…,8)和年销售量yi数据进行了初步处理,得到下面的散点图及一些统计量的值.

$\overline{x}$$\overline{y}$$\overline{w}$ $\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根据散点图判断,$y=a+bx,y=c+d\sqrt{x}$哪一个更适合作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(2)的结果回答下列问题;
①当年宣传费x=90时,年销售量及年利润的预报值是多少?
②当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{μ}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网