ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÃæ²ÄÁÏ£º¸ù¾ÝÁ½½ÇºÍÓë²îµÄÕýÏÒ¹«Ê½£¬ÓÐ
sin£¨¦Á+¦Â£©=sin¦Ácos¦Â+cos¦Ásin¦Â ¡¢Ù
sin£¨¦Á-¦Â£©=sin¦Ácos¦Â-cos¦Ásin¦Â ¡¢Ú
ÓÉ¢Ù+¢ÚµÃsin£¨¦Á+¦Â£©+sin£¨¦Á-¦Â£©=2sin¦Ácos¦Â ¡¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
£¬¦Â=
´úÈë¢ÛµÃsinA+sinB=2sin
cos
£®
£¨1£©ÀûÓÃÉÏÊö½áÂÛ£¬ÊÔÇósin15¡ã+sin75¡ãµÄÖµ£®
£¨2£©Àà±ÈÉÏÊöÍÆÖ¤·½·¨£¬¸ù¾ÝÁ½½ÇºÍÓë²îµÄÓàÏÒ¹«Ê½£¬Ö¤Ã÷£ºcosA+cosB=2cos
•cos
£®
£¨3£©Çóº¯Êýy=cos2x•cos£¨2x+
£©x¡Ê[0£¬
]µÄ×î´óÖµ£®
sin£¨¦Á+¦Â£©=sin¦Ácos¦Â+cos¦Ásin¦Â ¡¢Ù
sin£¨¦Á-¦Â£©=sin¦Ácos¦Â-cos¦Ásin¦Â ¡¢Ú
ÓÉ¢Ù+¢ÚµÃsin£¨¦Á+¦Â£©+sin£¨¦Á-¦Â£©=2sin¦Ácos¦Â ¡¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
| A+B |
| 2 |
| A-B |
| 2 |
´úÈë¢ÛµÃsinA+sinB=2sin
| A+B |
| 2 |
| A-B |
| 2 |
£¨1£©ÀûÓÃÉÏÊö½áÂÛ£¬ÊÔÇósin15¡ã+sin75¡ãµÄÖµ£®
£¨2£©Àà±ÈÉÏÊöÍÆÖ¤·½·¨£¬¸ù¾ÝÁ½½ÇºÍÓë²îµÄÓàÏÒ¹«Ê½£¬Ö¤Ã÷£ºcosA+cosB=2cos
| A+B |
| 2 |
| A-B |
| 2 |
£¨3£©Çóº¯Êýy=cos2x•cos£¨2x+
| ¦Ð |
| 6 |
| ¦Ð |
| 4 |
¿¼µã£ºÀà±ÈÍÆÀí,Á½½ÇºÍÓë²îµÄÕýÏÒº¯Êý
רÌ⣺¹æÂÉÐÍ,Èý½Çº¯ÊýµÄÇóÖµ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©ÓÉsinA+sinB=2sin
cos
£¬ÁîA=15¡ã£¬B=75¡ã£¬´úºÍ¿ÉµÃsin15¡ã+sin75¡ãµÄÖµ£®
£¨2£©ÓÉcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦ÂÁ½Ê½Ïà¼ÓµÃ£ºcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
£¬¦Â=
£¬¿ÉµÃ½áÂÛ£»
£¨3£©½áºÏ£¨2£©µÄ½áÂÛ£¬½«A=2x£¬B=2x+
£¬´úÈ뻯¼òº¯ÊýµÄ½âÎöʽ£¬½ø¶ø¸ù¾Ýx¡Ê[0£¬
]£¬Çó³öÏàλ½Ç4x+
¡Ê[
£¬
]£¬½ø¶ø¸ù¾ÝÓàÏÒº¯ÊýµÄͼÏóºÍÐÔÖʵõ½º¯Êýy=cos2x•cos£¨2x+
£©x¡Ê[0£¬
]µÄ×î´óÖµ£®
| A+B |
| 2 |
| A-B |
| 2 |
£¨2£©ÓÉcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦ÂÁ½Ê½Ïà¼ÓµÃ£ºcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
| A+B |
| 2 |
| A-B |
| 2 |
£¨3£©½áºÏ£¨2£©µÄ½áÂÛ£¬½«A=2x£¬B=2x+
| ¦Ð |
| 6 |
| ¦Ð |
| 4 |
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| 7¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 4 |
½â´ð£º
½â£º£¨1£©¡ßsinA+sinB=2sin
cos
¡àsin15¡ã+cos75¡ã=2sin
•cos
=2sin45¡ã•cos£¨-30¡ã£©=
¡3
£¨2£©ÒòΪcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬------¢Ù
cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â------¢Ú¡5
¢Ù+¢ÚµÃcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
£¬¦Â=
£¬¡6
´úÈë¢ÛµÃ£ºcosA+cosB=2cos
•cos
£®¡7
£¨3£©ÓÉ£¨2£©Öª£¬y=cos2xcos(2x+
)=
[cos(4x+
)+cos
]=
cos(4x+
)+
¡8
¡ßx¡Ê[0£¬
]£¬
¡à4x+
¡Ê[
£¬
]£¬¡..9
¹Êº¯ÊýµÄ×î´óֵΪf(0)=
£®¡10
| A+B |
| 2 |
| A-B |
| 2 |
¡àsin15¡ã+cos75¡ã=2sin
| 15¡ã+75¡ã |
| 2 |
| 15¡ã-75¡ã |
| 2 |
| ||
| 2 |
£¨2£©ÒòΪcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬------¢Ù
cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â------¢Ú¡5
¢Ù+¢ÚµÃcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
| A+B |
| 2 |
| A-B |
| 2 |
´úÈë¢ÛµÃ£ºcosA+cosB=2cos
| A+B |
| 2 |
| A-B |
| 2 |
£¨3£©ÓÉ£¨2£©Öª£¬y=cos2xcos(2x+
| ¦Ð |
| 6 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ||
| 4 |
¡ßx¡Ê[0£¬
| ¦Ð |
| 4 |
¡à4x+
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| 7¦Ð |
| 6 |
¹Êº¯ÊýµÄ×î´óֵΪf(0)=
| ||
| 2 |
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÁ½½ÇºÍÓë²îÈý½Çº¯Êý¹«Ê½¡¢¶þ±¶½Ç¹«Ê½¡¢Èý½Çº¯ÊýµÄºãµÈ±ä»»µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼ÏëµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿