题目内容
8.若sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),则sin($\frac{π}{2}$+α)=( )| A. | -$\frac{\sqrt{6}}{3}$ | B. | -$\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 由已知利用诱导公式可求sinα,利用诱导公式,同角三角函数基本关系式化简所求即可得解.
解答 解:∵sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),
∴sinα=-$\frac{{\sqrt{3}}}{3}$,
∴sin($\frac{π}{2}$+α)=cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{6}}{3}$.
故选:A.
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
16.化简 $\overrightarrow{AC}-\overrightarrow{BD}+\overrightarrow{CD}-\overrightarrow{AB}$=( )
| A. | $\overrightarrow{AB}$ | B. | $\overrightarrow{BC}$ | C. | $\overrightarrow{DA}$ | D. | $\overrightarrow 0$ |
3.已知角α的终边过点P(-5,12),则sinα+cosα=( )
| A. | $\frac{4}{13}$ | B. | $-\frac{4}{13}$ | C. | $\frac{7}{13}$ | D. | $-\frac{7}{13}$ |
20.已知函数$f(x)=sinωx+\sqrt{3}cosωx$ (ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是( )
| A. | $[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$ | B. | $[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ | ||
| C. | $[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$ | D. | $[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ |
18.已知空间四边形ABCD,链接AC,BD,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$为( )
| A. | $\overrightarrow{AD}$ | B. | $\overrightarrow{BD}$ | C. | $\overrightarrow{AC}$ | D. | $\overrightarrow{0}$ |