题目内容
7.若不等式组$\left\{\begin{array}{l}{x+ay+1≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,表示的平面区域的面积等于4,则a=( )| A. | 1 | B. | -1 | C. | 0 | D. | 2 |
分析 本题主要考查线性规划的基本知识,先画出约束条件的可行域,根据已知条件中,表示的平面区域的面积等于4,构造关于a的方程,解方程即可得到答案.
解答 解:画出满足条件的平面区域,如图示:
,
∵平面区域的面积等于4,
∴S△ABC=$\frac{1}{2}$×4×h=4,
故C到AB的距离是2,即C的纵坐标是2,从而求出横坐标是2,
将C(2,2)代入x+ay+1=0,解得:a=1,
故选:A.
点评 平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.
练习册系列答案
相关题目
17.在2015-2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数$\frac{n}{N}$,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.
根据统计表的信息:
(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| 甲 | $\frac{5}{13}$ | $\frac{4}{12}$ | $\frac{14}{30}$ | $\frac{5}{9}$ | $\frac{14}{19}$ | $\frac{10}{16}$ | $\frac{12}{23}$ | $\frac{4}{8}$ | $\frac{6}{13}$ | $\frac{10}{19}$ |
| 乙 | $\frac{13}{26}$ | $\frac{9}{18}$ | $\frac{9}{14}$ | $\frac{8}{16}$ | $\frac{6}{15}$ | $\frac{10}{14}$ | $\frac{7}{21}$ | $\frac{9}{16}$ | $\frac{10}{22}$ | $\frac{12}{20}$ |
(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.