题目内容

17.在2015-2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数$\frac{n}{N}$,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.

12345678910
$\frac{5}{13}$$\frac{4}{12}$$\frac{14}{30}$$\frac{5}{9}$$\frac{14}{19}$$\frac{10}{16}$$\frac{12}{23}$$\frac{4}{8}$$\frac{6}{13}$$\frac{10}{19}$
$\frac{13}{26}$$\frac{9}{18}$$\frac{9}{14}$$\frac{8}{16}$$\frac{6}{15}$$\frac{10}{14}$$\frac{7}{21}$$\frac{9}{16}$$\frac{10}{22}$$\frac{12}{20}$
根据统计表的信息:
(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.

分析 (Ⅰ)根据投篮统计数据,利用列举法能求出甲球员的投篮命中率超过0.5的概率和乙球员投篮命中率超过0.5的概率.
(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B1,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B2.由P(A)=P(B1)+P(B2),能求出甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率.
(Ⅲ)X的可能取值为0,1,2,3,且B~B(3,$\frac{2}{5}$),由此能求出X的分布列及数学期望.

解答 解:(Ⅰ)根据投篮统计数据,在10场比赛中,
甲球员投篮命中率超过0.5的场次有5场,分别是4,5,6,7,10,
所以在随机选择的一场比赛中,
甲球员的投篮命中率超过0.5的概率是$\frac{1}{2}$.
在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10,
所以在随机选择的一场比赛中,乙球员的投篮命中率超过0.5的概率是$\frac{2}{5}$.3分
(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A,
甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B1
乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B2
则P(A)=P(B1)+P(B2)=$\frac{1}{2}×\frac{3}{5}+\frac{1}{2}×\frac{2}{5}$=$\frac{1}{2}$.7分
(Ⅲ)X的可能取值为0,1,2,3.
P(X=0)=${C}_{3}^{0}(\frac{2}{5})^{0}(\frac{3}{5})^{3}$=$\frac{27}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}=\frac{54}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{3}{5})$=$\frac{36}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{5})^{3}$=$\frac{8}{125}$,
X的分布列如下表:

 X 0 1 2 3
 P $\frac{27}{125}$ $\frac{54}{125}$ $\frac{36}{125}$ $\frac{8}{125}$
∵X~B(3,$\frac{2}{5}$),∴EX=3×$\frac{2}{5}$=$\frac{6}{5}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网