题目内容

11.已知y=f(x)是定义在[-1,1]上的偶函数,与g(x)图象关于x=1对称,当x∈[2,3]时,g(x)=2a(x-2)-3(x-2)2,a为常数,若f(x)的最大值为12,则a=(  )
A.3B.6C.6或$\frac{15}{2}$D.$\frac{15}{2}$

分析 先根据f(x)与g(x)的图象关于直线x=1对称得出f(x)=g(2-x),根据g(x)的解析式,求出f(x)在[-1,0]上的解析式;再根据f(x)为偶函数得出f(x)在[0,1]上的解析式.利用函数的最大值求解a即可.

解答 解:∵f(x)与g(x)的图象关于直线x=1对称,
∴f(x)=g(2-x).
∴当x∈[-1,0]时,2-x∈[2,3],
∴f(x)=g(2-x)=-2ax-3x2
又∵f(x)为偶函数,
∴x∈[[0,1]时,-x∈[-1,0],
∴f(x)=f(-x)=ax-2x2
∴f(x)=$\left\{\begin{array}{l}{-2ax-3{x}^{2},x∈[-1,0]}\\{2ax-3{x}^{2},x∈[0,1]}\end{array}\right.$.
f(x)的最大值为12,x∈[0,1]时,当a≤0,不满足题意,当a>0时,最大值为:f(1)=2a-3=12,
解得a=$\frac{15}{2}$.
故选:D.

点评 本题主要考查函数的单调性和奇偶性的综合运用.要利用好函数的对称性和根据导函数的性质来判断函数的单调性.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网