题目内容
17.已知复数z满足z=$\frac{2i}{1+\sqrt{3}i}$(i为虚数单位),则z的共轭复数的虚部是-$\frac{1}{2}$.分析 利用复数的运算法则、共轭复数的定义即可得出.
解答 解:z=$\frac{2i}{1+\sqrt{3}i}$=$\frac{2i(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}$=$\frac{2(i+\sqrt{3})}{4}$=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,
则z的共轭复数$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i的虚部是-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
6.已知a,b是空间中两不同直线,α,β是空间中两不同平面,下列命题中正确的是( )
| A. | 若直线a∥b,b?α则a∥α | B. | 若平面α⊥β,a⊥α,则a∥β | ||
| C. | 若a⊥α,b⊥β,a∥b,则α∥β | D. | 若平面α∥β,a?α,b?β,则a∥b |
5.下列四个结论正确的是( )
| A. | 若n组数据(x1,y1),…(xn,yn)的散点都在y=-2x+1上,则相关系数r=-1 | |
| B. | 回归直线就是散点图中经过样本数据点最多的那条直线 | |
| C. | 已知点A(-1,0),B(1,0),若|PA|+|PB|=2,则动点P的轨迹为椭圆 | |
| D. | 设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加一个单位时,$\widehat{y}$平均增加2.5个单位 |
12.圆x2+y2-8x+6y-11=0的圆心、半径是( )
| A. | (4,3),6 | B. | (4,-3),6 | C. | (4,3),36 | D. | (4,-3),36 |
2.若函数y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$的图象关于直线x=φ对称,则x=φ可以为( )
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
6.使sinx<cosx成立的一个区间是( )
| A. | (-$\frac{3}{4}$π,$\frac{π}{4}$) | B. | (-$\frac{1}{2}$π,$\frac{π}{2}$) | C. | (-$\frac{1}{4}$π,$\frac{3π}{4}$) | D. | (0,π) |