题目内容
7.已知公比为q(0<q<1)的等比数列{an}中,a2=2,前三项的和为7.(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=a1•a2•…•an,求使0<bn<1的正整数n的最小值.
分析 (1)利用等比数列的通项公式及其性质即可得出;
(2)bn=a1•a2•…•an=${2}^{\frac{n(5-n)}{2}}$.由0<bn<1.利用指数的运算性质即可得出.
解答 解:(1)∵a2=2,前三项的和为7.∴$\left\{\begin{array}{l}{{a}_{2}=2}\\{\frac{{a}_{2}}{q}+{a}_{2}+{a}_{2}q=7}\end{array}\right.$,化为2q2-5q+2=0,0<q<1,解得q=$\frac{1}{2}$.
∴an=${a}_{2}{q}^{n-2}$=$2×(\frac{1}{2})^{n-2}$=23-n
(2)bn=a1•a2•…•an=22+1+…+(3-n)=${2}^{\frac{n(5-n)}{2}}$.
由0<${2}^{\frac{n(5-n)}{2}}$<1.
可得$\frac{n(5-n)}{2}$<0,
解得n>5,
∴使0<bn<1的正整数n的最小值为6.
点评 本题考查了等差数列与等比数列的通项公式及其性质、指数的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.以下叙述正确的有( )
(1)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
(2)分段函数在定义域的不同部分有不同的对应法则,但它是一个函数.
(3)若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2≠∅也能成立.
(1)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
(2)分段函数在定义域的不同部分有不同的对应法则,但它是一个函数.
(3)若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2≠∅也能成立.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 0个 |
15.求值:
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)cos$\frac{2π}{7}$•cos$\frac{4π}{7}$•cos$\frac{6π}{7}$.
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)cos$\frac{2π}{7}$•cos$\frac{4π}{7}$•cos$\frac{6π}{7}$.
12.函数y=cos($\frac{π}{2}$-x),x∈[-π,$\frac{π}{2}$]的单调性是( )
| A. | 在[-π,-$\frac{π}{2}$]上是减函数,在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数 | |
| B. | 在[-π,0]上是减函数,在[0,$\frac{π}{2}$]上是增函数 | |
| C. | 在[-π,-$\frac{π}{2}$]上是增函数,在[-$\frac{π}{2}$,$\frac{π}{2}$]上是减函数 | |
| D. | 在[-π,0]上是增函数,在[0,$\frac{π}{2}$]上是减函数 |
19.方程cos($\frac{5}{2}$π+x)=($\frac{1}{2}$)x在区间(0,100π)内解的个数是( )
| A. | 98 | B. | 100 | C. | 102 | D. | 200 |