题目内容
6.已知$f(x)=2{cos^2}x+\sqrt{3}sin2x+a,(a∈R)$(1)若x∈R,求f(x)的单调增区间;
(2)若$x∈[0,\frac{π}{2}]$时,f(x)的最大值为3,求a的值;
(3)在(2)的条件下,若方程f(x)=m在$[0,\frac{3π}{4}]$上恰有两个不等实数根,求m的取值范围.
分析 将f(x)整理成f(x)=2sin(2x+$\frac{π}{6}$)+a+1,
(1)根据函数的单调性解不等式求出函数的递增区间即可;
(2)求出f(x)的最大值是3+a=3,求出a的值是0;
(3)将a=0代入,求出f(x)的表达式,求出特殊点的函数值,结合函数的草图,求出m的范围即可.
解答 解:f(x)=1+cos2x+$\sqrt{3}$sin2x+a=2($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)+1+a=2sin(2x+$\frac{π}{6}$)+a+1
(1)令$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2},k∈z$
得$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6},k∈z$,
∴f(x)的单调递增区间为$[{\;}\right.kπ-\frac{π}{3},kπ+\frac{π}{6}\left.{\;}],k∈z$;
(2)$x=\frac{π}{6}$时,$2x+\frac{π}{6}=\frac{π}{2}$,
函数f(x)有最大值3+a,
∴3+a=3,∴a=0;
(3)由(2)得:f(x)=2sin(2x+$\frac{π}{6}$)+1,
列表得:
| X | $\frac{π}{6}$ | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | $\frac{5π}{3}$ |
| x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{5}$ | $\frac{3π}{4}$ |
| f(x) | 2 | 3 | 1 | -1 | 1-$\sqrt{3}$ |
可得:$m∈(-1,1-\sqrt{3}]∪[2,3)$..
点评 本题考查了三角函数问题,考查函数的单调性、最值问题,是一道中档题.
练习册系列答案
相关题目
16.若抛物线y2=2px(p>0)的焦点与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}=1$的右焦点重合,则p的值为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
17.直线$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$( t为参数)倾斜角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
14.若方程$\left\{\begin{array}{l}{x=1-3t}\\{y=4t}\end{array}\right.$(t为参数)与$\left\{\begin{array}{l}{x=1+λcosθ}\\{y=λsinθ}\end{array}\right.$(λ为参数)表示同一条直线,则λ与t的关系是( )
| A. | λ=5t | B. | λ=-5t | C. | t=5λ | D. | t=-5λ |
18.设集合A={x|-1≤x<4},B={x|x2-4x+3<0},则A∩(∁RB)可表示为( )
| A. | [-1,1)∪(3,4) | B. | [-1,1]∪[3,4) | C. | (1,3) | D. | (-∞,+∞) |
15.设双曲线$\frac{x^2}{3}-{y^2}$=1的两焦点分别为F1,F2,P为双曲线上的一点,若PF1与双曲线的一条渐近线平行,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=( )
| A. | $-\frac{35}{12}$ | B. | $-\frac{11}{12}$ | C. | $-\frac{7}{12}$ | D. | $-\frac{1}{12}$ |