题目内容

1.已知双曲线C的焦点在x轴上,渐近线方程是y=±2x,则C的离心率e=$\sqrt{5}$.

分析 设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),求出渐近线方程,可得b=2a,由a,b,c的关系和离心率公式计算即可得到所求值.

解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由渐近线方程y=±$\frac{b}{a}$x,可得
$\frac{b}{a}$=2,即b=2a,
可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的离心率的求法,注意运用双曲线方程和渐近线方程的关系,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网