题目内容

在三棱锥S-ABC中,△ABC是边长为8的正三角形,SA=SC=2
7
,二面角S-AC-B为60°
(1)求证:AC⊥SB;
(2)求三棱锥S-ABC的体积;
(3)求二面角S-BC-A的正切值.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:计算题,证明题,空间位置关系与距离,空间角
分析:(1)取AC的中点D,连接SD,BD,证明SD⊥AC,BD⊥AC,说明AC⊥面SBD,即可证明AC⊥SB.
(2)过S作SO⊥BD于O,说明∠SDB为二面角S-AC-B平面角,求出SO,然后求出几何体的体积.
(3)过O作OH⊥BC于H,连SH,则SH⊥BC,所以∠SHO为二面角S-BC-A的平面角,分别在三角形中求相应线段的长,从而可解.
解答: 解(1)取AC的中点D,连接SD,BD,
∵SA=SC,D为AC的中点,
∴SD⊥AC,∵AB=BC,D为AC的中点,
∴BD⊥AC,又SD∩BD=D∴AC⊥面SBD,
又SB?面SBD,∴AC⊥SB;
(2)过S作SO⊥BD于O,∵AC⊥面SBD,
又AC?平面ABC∴平面SBD⊥平面ABC,
又SO⊥BD∴SO⊥平面ABC,
在Rt△SAD中,SA=2
7
,AD=
1
2
AC
=4
∴SD=
28-16
=2
3
∵SD⊥AC,BD⊥AC,∴∠SDB为二面角S-AC-B平面角,∴∠SDB=60°,
在Rt△SDO中,SOSO=SDsin∠SDO=2
3
×
3
2
=3,
∴VS-ABC=
1
3
S△ABC•SO=
1
3
3
4
•64•3=16
3

(3)过O作OH⊥BC于H,连SH,则SH⊥BC∴∠SHO为二面角S-BC-A的平面角  
∵正△ABC是边长为8,∴BD=4
3
,∵OD=
SD2-SO2
=
3
,∴OB=3
3

在Rt△OHB中,OH=OBsin30°=
1
2
OB=
3
3
2
,在Rt△SOH中,tan∠SHO=
SO
OH
=
3
3
3
2
=
2
3
3

即二面角S-BC-A的正切值为
2
3
3
点评:本题是中档题,考查空间几何体的直线与直线的位置关系,几何体的体积的求法,空间的二面角的平面角,考查空间想象能力、逻辑推理能力、计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网