题目内容
6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为( )| A. | 216 | B. | 100 | C. | 120 | D. | 180 |
分析 根据题意,分2步进行分析:①、对于百位数字,可以在l,2,3,4,5五个数字中任选1个,②、在其余的5个数字中任选2个,安排在十位、个位位置,由分步计数原理计算可得答案.
解答 解:根据题意,分2步进行分析:
①、对于百位数字,可以在l,2,3,4,5五个数字中任选1个,则百位有5种方法,
②、对于十位、个位数字,在其余的5个数字中任选2个,安排在十位、个位即可,有A52=20种情况,
则一共可以组成5×20=100个无重复的三位数;
故选:B.
点评 本题考查分步计数原理的应用,注意百位数字不能为0.
练习册系列答案
相关题目
16.
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体
育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | 10 | 55 | |
| 合计 |
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体
育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
17.${∫}_{-1}^{2}$|x|dx等于( )
| A. | -1 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
14.已知0<α<$\frac{π}{2}$<β<π,又sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{4}{5}$,则sinβ等于( )
| A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或0 |
7.
如图,小圆圈表示网络的结点,结点之间的连线表示有网线相连.连线上标注的数字表示该网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可沿不同的路径同时传递,则单位的时间内传递的最大信息量是( )
| A. | 26 | B. | 24 | C. | 20 | D. | 19 |
4.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学 (常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情况如表:(单位:人)
(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?
(2)记常喝碳酸饮料且无骨质疏松症状的8名同学为A,B…G,H,从8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,求A,B至少有一个被抽到的概率.
附表及公式.
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 有骨质疏松症状 | 无骨质疏松症状 | 总计 | |
| 常喝碳酸饮料的同学 | 22 | 8 | 30 |
| 不常喝碳酸饮料的同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
(2)记常喝碳酸饮料且无骨质疏松症状的8名同学为A,B…G,H,从8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,求A,B至少有一个被抽到的概率.
附表及公式.
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |