题目内容

16.若n是正整数,则${7^n}+{7^{n-1}}C_n^1+{7^{n-2}}C_n^2+…+7C_n^{n-1}$除以9的余数是0或7.

分析 把原式还原成二项式定理.利用二项式定理展开,对n的奇偶性讨论,可得答案.

解答 解:${7^n}+{7^{n-1}}C_n^1+{7^{n-2}}C_n^2+…+7C_n^{n-1}$=(7+1)n-1=8n-1=(9-1)n-1=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}+{C}_{n}^{n}{9}^{0}(-1)^{n}-1$
①n是正偶数,则原式=(9-1)n-1=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1$
每项都是9的倍数.
∴这整个式子都可以被9整除,此时余数为0.
②若n是正奇数,则原式=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}+{C}_{n}^{n}{9}^{0}(-1)^{n}-1$.
=${C}_{n}^{0}{9}^{n}{+C}_{n}^{1}{9}^{n-1}(-1$)+…+${C}_{n}^{n-1}{9}^{1}(-1)^{n-1}-2$.
∵-2不能整除9
∴余数就应该是7.
综上,余数应该是0或7.
故答案为:0或7.

点评 本题考查了二项式定理的灵活运用和整除问题.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网