题目内容
已知实数x,y满足
,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值范围是 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,由z=-mx+y的最大值为-2m+10,即当目标函数经过点(2,10)时,取得最大,当经过点(2,-2)时,取得最小值,利用数形结合确定m的取值范围.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由目标函数z=-mx+y得y=mx+z,
则直线的截距最大,z最大,直线的截距最小,z最小.
∵目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,
∴当目标函数经过点(2,10)时,取得最大,
当经过点(2,-2)时,取得最小值,
∴目标函数z=-mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x-y+6=0的斜率小,
即-1≤m≤2,
故答案为:[-1,2].
由目标函数z=-mx+y得y=mx+z,
则直线的截距最大,z最大,直线的截距最小,z最小.
∵目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,
∴当目标函数经过点(2,10)时,取得最大,
当经过点(2,-2)时,取得最小值,
∴目标函数z=-mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x-y+6=0的斜率小,
即-1≤m≤2,
故答案为:[-1,2].
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,确定目标函数的斜率是解决本题的关键,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
已知圆x2+y2=4,过点P(0,
)的直线l交该圆于A,B两点,O为坐标原点,则△OAB面积的最大值是( )
| 3 |
A、
| ||
| B、2 | ||
C、2
| ||
| D、4 |
定义在R上的函数f(x)满足:f(1)=-2,且对于任意的x∈R,都有f′(x)>2,则不等式f(2x)>2x+1-4的解集为( )
| A、(1,+∞) |
| B、(-∞,0) |
| C、(0,+∞) |
| D、(-∞,1) |
等差数列{an}满足a2=4,a1+a4+a7=24,则a10=( )
| A、16 | B、18 | C、20 | D、22 |
已知在△ABC中,2cosBsinC=sinA,则△ABC一定为( )
| A、等腰三角形 | B、直角三角形 |
| C、钝角三角形 | D、正三角形 |
已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a=2
,b=2
,A=60°,则角B等于( )
| 3 |
| 2 |
| A、45°或135° | B、135° |
| C、60° | D、45° |
“cos2α=-
”是“α=kπ+
,k∈Z”的( )
| ||
| 2 |
| 5π |
| 12 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |