ÌâÄ¿ÄÚÈÝ
19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉèÇúÏßC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÇúÏßC²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßCµÄ·½³Ì£¬ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèÇúÏßCÉϵĵãΪ£¨$\sqrt{3}cos¦È$£¬sin¦È£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÄÜÇó³öÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊý¦È£¬µÃÇúÏßCµÄ·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£¬
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
¼´$¦Ñ£¨cos¦Ècos\frac{¦Ð}{4}+sin¦Èsin\frac{¦Ð}{4}£©$=2$\sqrt{2}$£¬
ÕûÀí£¬µÃ¦Ñcos¦È+¦Ñsin¦È=4£¬
¡ß¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬
Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®
£¨2£©ÉèÇúÏßCÉϵĵãΪ£¨$\sqrt{3}cos¦È$£¬sin¦È£©£¬
¡àÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀ룺
$d=\frac{{|{\sqrt{3}cos¦È+sin¦È-4}|}}{{\sqrt{2}}}=\frac{{|{2sin£¨¦È+\frac{¦Ð}{3}£©-4}|}}{{\sqrt{2}}}¡Ü3\sqrt{2}$£®
¡àÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ${d_{max}}=3\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³ÌºÍÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÇúÏßÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê¡¢Ö±½Ç×ø±êµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮
| A£® | ×îСÕýÖÜÆÚΪ¦ÐµÄÆæº¯Êý | B£® | ×îСÕýÖÜÆÚΪ¦ÐµÄżº¯Êý | ||
| C£® | ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$µÄÆæº¯Êý | D£® | ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$µÄżº¯Êý |
| A£® | 3x-y-5=0 | B£® | x-3y+9=0 | C£® | 3x+y-13=0 | D£® | x+3y-15=0 |
ÔòÔËÐгÌÐòºóÊä³ö½á¹ûÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $S=\frac{100}{101}£¬P=\frac{100}{101}$ | B£® | $S=\frac{99}{100}£¬P=\frac{99}{202}$ | ||
| C£® | $S=\frac{100}{101}£¬P=\frac{99}{202}$ | D£® | $S=\frac{100}{101}£¬P=\frac{99}{100}$ |