题目内容

20.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=-4x+1,写出分段函数f(x)的解析式$f(x)=\left\{{\begin{array}{l}{-4x+1}\\ 0\\{-4x-1}\end{array}\begin{array}{l}{,x>0}\\{,x=0}\\{,x<0}\end{array}}\right.$.

分析 根据函数奇偶性的性质即可得到结论.

解答 解:∵f(x)是定义域为R的奇函数,
∴f(0)=0,
若x<0,则-x>0,
即当-x>0时,f(-x)=4x+1=-f(x),
即f(x)=-4x-1,
则$f(x)=\left\{{\begin{array}{l}{-4x+1}\\ 0\\{-4x-1}\end{array}\begin{array}{l}{,x>0}\\{,x=0}\\{,x<0}\end{array}}\right.$;
故答案为:$f(x)=\left\{{\begin{array}{l}{-4x+1}\\ 0\\{-4x-1}\end{array}\begin{array}{l}{,x>0}\\{,x=0}\\{,x<0}\end{array}}\right.$;

点评 本题主要考查函数解析式的求解,利用函数奇偶性的对称性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网