题目内容
数列{
}的前n项和Sn为 .
| n |
| an |
考点:数列的求和
专题:等差数列与等比数列
分析:当a=1时,Sn=1+2+3+…+n=
.当a≠1时,Sn=
+
+
+…+
,利用错位相减法能求出Sn.
| n(n+1) |
| 2 |
| 1 |
| a |
| 2 |
| a2 |
| 3 |
| a3 |
| n |
| an |
解答:
解:当a=1时,Sn=1+2+3+…+n=
.
当a≠1时,
Sn=
+
+
+…+
,①
Sn=
+
+
+…+
,②
①-②,得(1-
)Sn=
+
+
+…+
-
=
-
∴Sn=
-
.
∴Sn=
.
故答案为:
.
| n(n+1) |
| 2 |
当a≠1时,
Sn=
| 1 |
| a |
| 2 |
| a2 |
| 3 |
| a3 |
| n |
| an |
| 1 |
| a |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| a3 |
| n |
| an+1 |
①-②,得(1-
| 1 |
| a |
| 1 |
| a |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| n |
| an+1 |
=
| ||||
1-
|
| n |
| an+1 |
∴Sn=
a-
| ||
| (a-1)2 |
| n |
| (a-1)an |
∴Sn=
|
故答案为:
|
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目