题目内容
已知数列{cn}满足cn=(1+
)n(n∈N*),试证明:
(1)当n≥2时,有cn>2;
(2)cn<3.
| 1 |
| n |
(1)当n≥2时,有cn>2;
(2)cn<3.
考点:数列与不等式的综合
专题:综合题,二项式定理
分析:(1)根据cn=(1+
)n=Cn0+Cn1•
+Cn2•(
)2+…+Cnn•(
)n,只用前两项即可证明不等式即可;
(2)通过组合数的性质对cn=(1+
)n=Cn0+Cn1•
+Cn2•(
)2+…+Cnn•(
)n进行放缩即可证明.
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
(2)通过组合数的性质对cn=(1+
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
解答:
证明:(1)∵cn=(1+
)n=Cn0+Cn1•
+Cn2•(
)2+…+Cnn•(
)n>Cn0+Cn1•
=2;
(2)∵cn=(1+
)n=Cn0+Cn1•
+Cn2•(
)2+…+Cnn•(
)n
=2+
•
+…+
••(
)n
<2+
+…+
<2+
+…+
=2+(1-
)+…+(
-
)
=3-
<3.
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
(2)∵cn=(1+
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
=2+
| n(n-1) |
| 2! |
| 1 |
| n2 |
| n(n-1)…•2•1 |
| n! |
| 1 |
| n |
<2+
| 1 |
| 2! |
| 1 |
| n! |
<2+
| 1 |
| 1×2 |
| 1 |
| (n-1)n |
=2+(1-
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n |
=3-
| 1 |
| n |
点评:本题主要考查二项式定理的应用,属于中等难度题型,
练习册系列答案
相关题目