题目内容

12.已知f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
(1)写出其逆命题,判断其真假
(2)写出其逆否命题,判断其真假,并证明你的结论.

分析 (1)根据逆命题的定义写出命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)的逆命题,再进行证明;
(2)写出命题的逆否名,由于互为逆否命题同真假,故只需证原命题为真,利用f(x)在R上是增函数,进行证明;

解答 解(1)逆命题:
已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
逆命题为真.
(2)逆否命题:
已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0.
原命题为真,证明如下:∵a+b≥0,∴a≥-b,b≥-a.
又∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-b)+f(-a)=f(-a)+f(-b).
∴原命题为真命题.∴其逆否命题也为真命题.

点评 此题主要考查四种命题的关系,逆命题、否命题的定义,注意互为逆否命题同真假,此题是一道很基础的题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网