题目内容
在空间中有一棱长为a的正四面体,其俯视图的面积的最大值为( )
| A、a2 | ||||
B、
| ||||
C、
| ||||
D、
|
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:首先想象一下,当正四面体绕着与平面平行的一条边转动时,不管怎么转动,投影的三角形的一个边始终是AB的投影,长度是1,而发生变化的是投影的高,体会高的变化,得到结果,投影面积最大应是线段AB相对的侧棱与投影面平行时取到.
解答:
解:由题意当线段AB相对的侧棱与投影面平行时投影最大,此时投影是关于线段AB对称的两个等腰三角形,
由于正四面体的棱长都是1,故投影面积为
×a×a=
.
故选:B.
由于正四面体的棱长都是1,故投影面积为
| 1 |
| 2 |
| a2 |
| 2 |
故选:B.
点评:本题考查平行投影及平行投影作图法,本题是一个计算投影面积的题目,注意解题过程中的投影图的变化情况,本题是一个中档题
练习册系列答案
相关题目
已知命题p:“直线l⊥平面α内的无数条直线”的充要条件是“l⊥α”,命题q:若平面α⊥平面β,直线a?β,则“a⊥α”是“a∥β”的充分不必要条件,则下列命题中正确的( )
| A、p∧q | B、p∨¬q |
| C、¬p∧¬q | D、¬p∧q |
已知抛物线C:x2=2py(p>0)的焦点为F,且
=4
,其中O是坐标原点,以G为圆心且与抛物线C有且只有两个交点的圆的方程为( )
| OG |
| OF |
| A、x2+(y-2p)2=3p2 |
| B、(x-2p)2+y2=3p2 |
| C、x2+(y-2p)2=p2 |
| D、(x-2p)2+y2=p2 |
若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )

A、
| ||
B、
| ||
C、
| ||
D、
|
已知x,y满足
,则
的取值范围是( )
|
| x+y-6 |
| x-4 |
A、[0,
| ||
B、[0,
| ||
C、[1,
| ||
D、[2,
|