题目内容
已知数列{an}的各项均为正数,且它的前n项和Sn=(
)2-
.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn.
| an+1 |
| 2 |
| 1 |
| 4 |
(1)求数列{an}的通项公式;
(2)设bn=
| an+1 |
| sn2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得4Sn=an2+2an,从而(an+an-1)(an-an-1-2)=0,由此得到{an}是首项为2,公差为2的等差数列,进而求出an=2n.
(2)由bn=
=
=
=
-
,利用裂项求和法能求出数列{bn}的前n项和.
(2)由bn=
| an+1 |
| Sn2 |
| 2n+1 |
| (n2+n)2 |
| 2n+1 |
| n2(n+1)2 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
解答:
解:(1)∵数列{an}的各项均为正数,且它的前n项和Sn=(
)2-
,
∴4Sn=an2+2an,①
∴n≥2时,4Sn-1=an-12+2an-1,②
①-②,得:4an=an2-an-12+2an-2an-1,
∴(an+an-1)(an-an-1)-2(an+an-1)=0,
∴(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,
∴an-an-1=2,
又S1=a1=(
)2-
,解得a1=2或a1=0,
{an}是首项为2,公差为2的等差数列,
∴an=2+(n-1)×2=2n.
(2)∵Sn=(
)2-
=(
)2-
=n2+n,
∴bn=
=
=
=
-
,
∴数列{bn}的前n项和:
Tn=[1-
+
-
+…+
-
]
=1-
=
.
| an+1 |
| 2 |
| 1 |
| 4 |
∴4Sn=an2+2an,①
∴n≥2时,4Sn-1=an-12+2an-1,②
①-②,得:4an=an2-an-12+2an-2an-1,
∴(an+an-1)(an-an-1)-2(an+an-1)=0,
∴(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,
∴an-an-1=2,
又S1=a1=(
| a1+1 |
| 2 |
| 1 |
| 4 |
{an}是首项为2,公差为2的等差数列,
∴an=2+(n-1)×2=2n.
(2)∵Sn=(
| an+1 |
| 2 |
| 1 |
| 4 |
| 2n+1 |
| 2 |
| 1 |
| 4 |
∴bn=
| an+1 |
| Sn2 |
| 2n+1 |
| (n2+n)2 |
| 2n+1 |
| n2(n+1)2 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
∴数列{bn}的前n项和:
Tn=[1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
=1-
| 1 |
| (n+1)2 |
| n2+2n |
| (n+1)2 |
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要注意构造法和裂项求和法的合理运用.
练习册系列答案
相关题目
直线y=x-1与双曲线x2-
=1(b>0)有两个不同的交点,则此双曲线离心率的范围是( )
| y2 |
| b2 |
A、(1,
| ||||
B、(
| ||||
| C、(1,+∞) | ||||
D、(1,
|