题目内容

5.某同学在独立完成课本上的例题:“求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”后,又进行了探究,发现下面的不等式均成立.$\sqrt{0}+\sqrt{10}<2\sqrt{5}$
$\sqrt{1.3}+\sqrt{8.7}<2\sqrt{5}$
$\sqrt{2}+\sqrt{8}<2\sqrt{5}$
$\sqrt{4.6}+\sqrt{5.4}<2\sqrt{5}$
$\sqrt{5}+\sqrt{5}≤2\sqrt{5}$
经过认真地分析、尝试,该同学归纳出一个一般性的不等式:$\sqrt{x}$+$\sqrt{y}$≤2$\sqrt{\frac{x+y}{2}}$(x,y∈[0,+∞)).请用合适的方法证明该不等式成立.

分析 运用分析法证明,通过两边平方和完全平方公式,即可得证.

解答 证明:要证:$\sqrt{x}$+$\sqrt{y}$≤2$\sqrt{\frac{x+y}{2}}$(x,y≥0),
两边平方即证x+y+2$\sqrt{xy}$≤2(x+y),
即为x+y-2$\sqrt{xy}$≥0,
即有($\sqrt{x}$-$\sqrt{y}$)2≥0,
上式显然成立,且当且仅当x=y取得等号.

点评 本题考查归纳思想的运用以及不等式的证明,注意运用分析法证明,考查推理和归纳能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网