题目内容
16.已知13+23+33+…+n3=$\frac{{{n^2}{{(an+b)}^2}}}{4}$对一切n∈N+都成立,那么a,b的可能值为( )| A. | a=b=1 | B. | a=1,b=2 | C. | a=2,b=1 | D. | 不存在这样的a,b |
分析 n=1,2代入,建立方程组,即可得出结论.
解答 解:由题意$\left\{\begin{array}{l}{1=\frac{(a+b)^{2}}{4}}\\{9=\frac{4(2a+b)^{2}}{4}}\end{array}\right.$,∴a=b=1,
故选A.
点评 本题考查归纳推理,考查方程组思想,比较基础.
练习册系列答案
相关题目
6.过抛物线y=x2的焦点F作一直线交抛物线于M(x1,y1)、N(x2,y2)两点,如果y1+y2=1,则线段MN的中点到准线的距离等于( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
7.已知函数f(x)=-$\frac{1}{3}$x3+x2+ax+b在x=3取得极值为4,则f(x)在区间[-2,1]上的最大值为( )
| A. | -1 | B. | 0 | C. | -$\frac{4}{3}$ | D. | -$\frac{13}{3}$ |
1.已知函数f(x)的导函数f′(x)=(1-x)e-x.若f(x)在(m,m+2)上单调递增,则实数m的取值范围是( )
| A. | [1,+∞) | B. | (-∞,1] | C. | [-1,+∞) | D. | (-∞,-1] |