题目内容

1.已知三点P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐标原点,则|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=(  )
A.2B.4C.$2\sqrt{3}$D.12

分析 求出向量的和,然后求解向量的模即可.

解答 解:三点P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐标原点,
则$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=(2,2,2).
则|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=$\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}$=2$\sqrt{3}$.
故选:C.

点评 本题考查空间向量的模,空间两点间距离公式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网