题目内容

若f(n)=
n2+1
-n
,g(n)=n-
n2-1
,φ(n)=
1
2n
(n∈N),则三者的大小关系是
 
考点:不等式比较大小
专题:不等式的解法及应用
分析:f(n)=
1
n2+1
+n
,g(n)=
1
n+
n2-1
,φ(n)=
1
2n
(n∈N*),又n+
n2-1
<2n<n+
n2+1
,即可得出.
解答: 解:∵f(n)=
1
n2+1
+n
,g(n)=
1
n+
n2-1
,φ(n)=
1
2n
(n∈N*),
n+
n2-1
<2n<n+
n2+1

∴g(n)>φ(n)>f(n).
故答案为:g(n)>φ(n)>f(n).
点评:本题考查了分母有理化、不等式的性质,考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网