题目内容
已知an+1=-an-2bn且bn+1=6an+6bn,a1=2,b1=4,求an、bn.
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:根据数列递推关系,建立方程,利用构造法,即可得到结论.
解答:
解:∵a1=2,b1=4,
∴a2=-a1-2b1=-2-8=-10,
由an+1=-an-2bn,得an+1+an=-2bn,
∵bn+1=6an+6bn,
∴bn+1=6an-3an+1-3an=-3an+1+3an,
即an+2+an+1=-2bn+1=-2(-3an+1+3an),
即an+2=5an+1-6an,
则an+2-3an+1=2(an+1-3an),
即数列{an+1-3an}是公比q=2的等比数列,首项为a2-3a1=-16,
则an+1-3an=-2n+3,
两边同除以3n+1,得
-
=-
=-4•(
)n+1,
则
-
=-4×(
)2,
-
=-4×(
)3,
…
-
=-4×(
)n-1,
等式两边同时相加得
-
=-4×
,
∴
=
-4×
=3•(
)n+1-4,
即an=2n+1-4•3n,
则an+1=2n+2-4•3n+1,
∴bn=6an-1+6bn-1=8•3n-3•2n.
综上:an=2n+1-4•3n,bn=6an-1+6bn-1=8•3n-3•2n.
∴a2=-a1-2b1=-2-8=-10,
由an+1=-an-2bn,得an+1+an=-2bn,
∵bn+1=6an+6bn,
∴bn+1=6an-3an+1-3an=-3an+1+3an,
即an+2+an+1=-2bn+1=-2(-3an+1+3an),
即an+2=5an+1-6an,
则an+2-3an+1=2(an+1-3an),
即数列{an+1-3an}是公比q=2的等比数列,首项为a2-3a1=-16,
则an+1-3an=-2n+3,
两边同除以3n+1,得
| an+1 |
| 3n+1 |
| an |
| 3n |
| 2n+3 |
| 3n+1 |
| 2 |
| 3 |
则
| a2 |
| 32 |
| a1 |
| 3 |
| 2 |
| 3 |
| a3 |
| 33 |
| a2 |
| 32 |
| 2 |
| 3 |
…
| an |
| 3n |
| an-1 |
| 3n-1 |
| 2 |
| 3 |
等式两边同时相加得
| an |
| 3n |
| a1 |
| 3 |
| ||||
1-
|
∴
| an |
| 3n |
| a1 |
| 3 |
| ||||
1-
|
| 2 |
| 3 |
即an=2n+1-4•3n,
则an+1=2n+2-4•3n+1,
∴bn=6an-1+6bn-1=8•3n-3•2n.
综上:an=2n+1-4•3n,bn=6an-1+6bn-1=8•3n-3•2n.
点评:本题主要考查数列通项公式的求解,根据数列的递推公式,通过构造数列是解决本题的关键.运算量大,难度较大.
练习册系列答案
相关题目
| x2-4 |
| x-1 |
| A、[-2,1)U[2,+∞) |
| B、[-2,+∞) |
| C、[2,+∞) |
| D、(1,+∞) |