题目内容

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+log 
1
2
an,Sn=b1+b2+…+bn,求Sn
考点:数列的求和,等比数列的性质
专题:综合题,等差数列与等比数列
分析:(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;
(II)先求出数列{bn}的通项公式,然后分组求和,即可得出结论.
解答: 解:(I)设等比数列{an}的首项为a1,公比为q
∵a3+2是a2,a4的等差中项
∴2(a3+2)=a2+a4
代入a2+a3+a4=28,得a3=8
∴a2+a4=20
解得
q=2
a1=2
q=
1
2
a1=32

∵数列{an}单调递增
∴an=2n
(II)∵an=2n
∴bn=an+log 
1
2
an=an-n,
∴Sn=
2(1-2n)
1-2
-
n(1+n)
2
=2n+1-2-
n(1+n)
2
点评:本题考查了等比数列的通项公式以及数列的前n项和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网