题目内容
设集合M={x|0<x≤3},N={x|x(x-2)<0},那么“a∈M”是“a∈N”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的解法,以及充分条件和必要条件的定义进行判断即可.
解答:
解:N={x|x(x-2)<0}={x|0<x<2},
∵M={x|0<x≤3},
∴N?M,
即“a∈M”是“a∈N”必要不充分条件,
故选:B.
∵M={x|0<x≤3},
∴N?M,
即“a∈M”是“a∈N”必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.
练习册系列答案
相关题目
若点P(3,a)到直线x+
y-4=0的距离为1,则a值为( )
| 3 |
A、
| ||||||
B、-
| ||||||
C、
| ||||||
D、
|
直线3x-
y+1=0的倾斜角是( )
| 3 |
| A、30° | B、60° |
| C、45° | D、150° |
设集合M={(x,y)|(x+1)2+y2=1,x,y∈R},N={(x,y)|x+y-c≥0,x,y∈R},则使得M∩N=M的c的取值范围是( )
A、[-
| ||
B、(-∞,-
| ||
C、[
| ||
D、(-∞,-
|
若不等式ax2+bx+c>0(a≠0)的解集为∅,则下列结论中正确的是( )
| A、a<0,b2-4ac>0 |
| B、a>0,b2-4ac<0 |
| C、a<0,b2-4ac≤0 |
| D、a>0,b2-4ac≥0 |
一排9个座位,坐了3家法律知识比赛小组,若每个小组都是3个成员,且要求每个小组的3个成员坐在一起,则不同的坐法种数为( )
| A、3×3! |
| B、3×(3!)3 |
| C、(3!)4 |
| D、9! |