题目内容
植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为( )米.
| A、1800 | B、2000 |
| C、2200 | D、2400 |
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:设在第n颗树旁放置所有树苗,利用等差数列求和公式,得出领取树苗往返所走的路程总和f(n)的表达式,再利用二次函数求最值的公式,求出这个最值.
解答:
解:记公路一侧所植的树依次记为第1颗、第2颗、第3颗、…、第20颗,
设在第n颗树旁放置所有树苗,领取树苗往返所走的路程总和为f(n) (n为正整数),
则
f(n)=[10+20+…+10(n-1)]+[10+20+…+10(20-n)]
=10[1+2+…+(n-1)]+10[1+2+…+(20-n)]
=5(n2-n)+5(20-n)(21-n)
=5(n2-n)+5(n2-41n+420)
=10n2-210n+2100,
∴f(n)=20(n2-21n+210),相应的二次函数图象关于n=10.5对称,
结合n为整数,可得当n=10或11时,f(n)的最小值为2000米.
故答案为:2000
设在第n颗树旁放置所有树苗,领取树苗往返所走的路程总和为f(n) (n为正整数),
则
| 1 |
| 2 |
=10[1+2+…+(n-1)]+10[1+2+…+(20-n)]
=5(n2-n)+5(20-n)(21-n)
=5(n2-n)+5(n2-41n+420)
=10n2-210n+2100,
∴f(n)=20(n2-21n+210),相应的二次函数图象关于n=10.5对称,
结合n为整数,可得当n=10或11时,f(n)的最小值为2000米.
故答案为:2000
点评:本题考查等差数列求和公式,根据题意建立函数模型,再用二次函数来解题,属于常见题型.
练习册系列答案
相关题目
已知函数f(x)=
,则f(x)( )
| 2x-1 |
| x+1 |
| A、在(-∞,0)上单调递增 |
| B、在(0,+∞)上单调递增 |
| C、在(-∞,0)上单调递减 |
| D、在(0,+∞)上单调递减 |
下列说法正确的是( )
| A、甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样 |
| B、期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好 |
| C、期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好 |
| D、期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好 |
函数f(x)=lgx+x-3的零点所在区间是( )
| A、(1,2) |
| B、(2,3) |
| C、(3,4) |
| D、(4,5) |
已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有( )
| A、7 | B、8 | C、9 | D、10 |
等差数列{an},Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是( )
| A、d<0 |
| B、S9>S5 |
| C、a7=0 |
| D、S6与S7是Sn的最大值 |
设x,y满足
,则z=x+y的最小值为-7,a=( )
|
| A、1 | B、2 | C、3 | D、4 |
以下各点在不等式组
表示的平面区域的是( )
|
| A、(1,1) |
| B、(-1,1) |
| C、(2,2) |
| D、(3,3) |