题目内容
12.已知正方形ABCD的对角线相交于点O,若随机向此正方形内投放一颗豆子,则它落在△AOB内的概率为( )| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 首先模长是几何概型的概率求法,由题意利用面积比求概率即可.
解答 解:已知正方形ABCD的对角线相交于点O,若随机向此正方形内投放一颗豆子,则它落在△AOB内的概率为$\frac{{S}_{△AOB}}{{S}_{正方形}}$=$\frac{1}{4}$;
故选A.
点评 本题考查了几何概型的概率求法;关键是明确几何测度为面积,利用面积比求概率.
练习册系列答案
相关题目
3.
《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m的值为0,则输入的a的值为( )
| A. | $\frac{21}{8}$ | B. | $\frac{45}{16}$ | C. | $\frac{93}{32}$ | D. | $\frac{189}{64}$ |
4.对于任意实数a,b,若a>b,则下列不等式一定成立的是( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | a2>b2 | C. | a3>b3 | D. | $\frac{a}{b}$>$\frac{b}{a}$ |
2.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为$\frac{{20\sqrt{5}π}}{3}$,则OA与平面ABCD所成的角的余弦值为( )
| A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{15}}}{5}$ |