题目内容
| OAn+1 |
| 4 |
| 5 |
| OAn |
| OB1 |
| 2 |
| OBn+1 |
| OBn |
| 2 |
(1)求点A2,B1的坐标;
(2)求
| OAn |
| OBn |
(3)求△AnOBn面积的最大值,并说明理由.
考点:数列的应用
专题:等差数列与等比数列
分析:(1)由
=
和A1(5,0)可求A2(4,0),由射线OB是第一象限角平分线和|
|=
,利用向量模的公式可求B1(1,1).
(2)设
=(xn,0),
=
,得(xn+1,0)=
(xn,0),⇒xn+1=
xn⇒{xn}成等比数列,又x1=5,q=
,得xn=5•(
)n-1,进而得到
=(5•(
)n-1,0);设
=(yn,yn),yn>0,得|
|=
yn,由|
|=|
|+
,得yn+1=yn+1得{yn}是等差数列,可求得yn=1+(n-1)=n,进而求得
=(n,n);(3)由S△AnOBn=
|
||
|sin
,可得S△AnOBn=
•5•(
)n-1•
n•
=
•(
)n,利用换元法设tn=
•(
)n,当n≥2时,tn-tn-1=
•(
)n-
•(
)n-1可知1≤n≤4时,{tn}是递增数列,n≥6时,{tn}是递减数列,即t1<t2<t3<t4=t5>t6>t7>…>tn>…进而求得(S△AnOBn)max=t4=t5=
.
| OA2 |
| 4 |
| 5 |
| OA1 |
| OB1 |
| 2 |
(2)设
| OAn |
| OAn+1 |
| 4 |
| 5 |
| OAn |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| OAn |
| 4 |
| 5 |
| OBn |
| OBn |
| 2 |
| OBn+1 |
| OBn |
| 2 |
| OBn |
| 1 |
| 2 |
| OAn |
| OBn |
| π |
| 4 |
| 1 |
| 2 |
| 4 |
| 5 |
| 2 |
| ||
| 2 |
| 25n |
| 8 |
| 4 |
| 5 |
| 25n |
| 8 |
| 4 |
| 5 |
| 25n |
| 8 |
| 4 |
| 5 |
| 25(n-1) |
| 8 |
| 4 |
| 5 |
| 128 |
| 25 |
解答:
解:(1)
=
=
(5,0)=(4,0),A2(4,0),(2分)
设B1(x,x),x>0,由|
|=
,得
=
,
x=1,∴B1(1,1).
(2)设
=(xn,0),则(xn+1,0)=
(xn,0),⇒xn+1=
xn,{xn}成等比数列,
x1=5,q=
,xn=5•(
)n-1,
∴
=(5•(
)n-1,0).(6分)
设
=(yn,yn),yn>0,|
|=
yn由|
|=|
|+
⇒yn+1=yn+1,
∴{yn}是等差数列 (8分)yn=1+(n-1)=n,
∴
=(n,n).(9分)
(3)S△AnOBn=
|
||
|sin
=
•5•(
)n-1•
n•
=
•(
)n,(11分)
设tn=
•(
)n,当n≥2时,tn-tn-1=
•(
)n-
•(
)n-1=
•(
)n(5-n),
∴1≤n≤4时,{tn}是递增数列,n≥6时,{tn}是递减数列,t1<t2<t3<t4=t5>t6>t7>…>tn>…,
∴(S△AnOBn)max=t4=t5=
.
| OA2 |
| 4 |
| 5 |
| OA1 |
| 4 |
| 5 |
设B1(x,x),x>0,由|
| OB1 |
| 2 |
| x2+y2 |
| 2 |
x=1,∴B1(1,1).
(2)设
| OAn |
| 4 |
| 5 |
| 4 |
| 5 |
x1=5,q=
| 4 |
| 5 |
| 4 |
| 5 |
∴
| OAn |
| 4 |
| 5 |
设
| OBn |
| OBn |
| 2 |
| OBn+1 |
| OBn |
| 2 |
∴{yn}是等差数列 (8分)yn=1+(n-1)=n,
∴
| OBn |
(3)S△AnOBn=
| 1 |
| 2 |
| OAn |
| OBn |
| π |
| 4 |
| 1 |
| 2 |
| 4 |
| 5 |
| 2 |
| ||
| 2 |
| 25n |
| 8 |
| 4 |
| 5 |
设tn=
| 25n |
| 8 |
| 4 |
| 5 |
| 25n |
| 8 |
| 4 |
| 5 |
| 25(n-1) |
| 8 |
| 4 |
| 5 |
| 125 |
| 128 |
| 4 |
| 5 |
∴1≤n≤4时,{tn}是递增数列,n≥6时,{tn}是递减数列,t1<t2<t3<t4=t5>t6>t7>…>tn>…,
∴(S△AnOBn)max=t4=t5=
| 128 |
| 25 |
点评:本题考查点A2,B1的坐标的求法,考
,
的坐标的求法,考查△AnOBn面积的最大值的求法,是中档题,解题时要认真审题,注意数列和向量知识的综合应用.
| OAn |
| OBn |
练习册系列答案
相关题目
已知
,
满足:|
|=3,|
|=2,则|
+
|=4,则|
-
|=( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
| C、3 | ||
D、
|
在正三棱锥P-ABC中,三条侧棱两两互相垂直,侧棱长为a,则点P到平面ABC的距离为( )
| A、a | ||||
B、
| ||||
C、
| ||||
D、
|
设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列为真命题的是( )
| A、若α⊥β,m⊥α,则m∥β |
| B、若α⊥γ,β⊥γ,则α∥β |
| C、若m⊥α,n∥m,则n⊥α |
| D、若m∥α,n∥α,则m∥n |