题目内容

平面直角坐标系中,O为原点,射线OA与x轴正半轴重合,射线OB是第一象限角平分线.在OA上有点列A1,A2,A3,…,An,…,在OB上有点列B1,B2,B3,…,Bn,…已知
OAn+1
=
4
5
OAn
,A1(5,0),|
OB1
|=
2
,|
OBn+1
|=|
OBn
|+
2

(1)求点A2,B1的坐标;
(2)求
OAn
OBn
的坐标;
(3)求△AnOBn面积的最大值,并说明理由.
考点:数列的应用
专题:等差数列与等比数列
分析:(1)由
OA2
=
4
5
OA1
和A1(5,0)可求A2(4,0),由射线OB是第一象限角平分线和|
OB1
|=
2
,利用向量模的公式可求B1(1,1).
(2)设
OAn
=(xn,0)
OAn+1
=
4
5
OAn
,得(xn+1,0)=
4
5
(xn,0),⇒xn+1=
4
5
xn
⇒{xn}成等比数列,又x1=5,q=
4
5
,得xn=5•(
4
5
)n-1
,进而得到
OAn
=(5•(
4
5
)
n-1
,0)
;设
OBn
=(ynyn),yn>0
,得|
OBn
|=
2
yn
,由|
OBn+1
|=|
OBn
|+
2
,得yn+1=yn+1得{yn}是等差数列,可求得yn=1+(n-1)=n,进而求得
OBn
=(n,n)
;(3)由SAnOBn=
1
2
|
OAn
||
OBn
|sin
π
4
,可得SAnOBn=
1
2
•5•(
4
5
)n-1
2
n•
2
2
=
25n
8
•(
4
5
)n
,利用换元法设tn=
25n
8
•(
4
5
)n
,当n≥2时,tn-tn-1=
25n
8
•(
4
5
)n-
25(n-1)
8
•(
4
5
)n-1
可知1≤n≤4时,{tn}是递增数列,n≥6时,{tn}是递减数列,即t1<t2<t3<t4=t5>t6>t7>…>tn>…进而求得(SAnOBn)max=t4=t5=
128
25
解答: 解:(1)
OA2
=
4
5
OA1
=
4
5
(5,0)=(4,0)
,A2(4,0),(2分)
设B1(x,x),x>0,由|
OB1
|=
2
,得
x2+y2
=
2

x=1,∴B1(1,1).
(2)设
OAn
=(xn,0)
,则(xn+1,0)=
4
5
(xn,0),⇒xn+1=
4
5
xn
,{xn}成等比数列,
x1=5,q=
4
5
xn=5•(
4
5
)n-1

OAn
=(5•(
4
5
)
n-1
,0)
.(6分)
OBn
=(ynyn),yn>0
|
OBn
|=
2
yn
|
OBn+1
|=|
OBn
|+
2
yn+1=yn+1

∴{yn}是等差数列 (8分)yn=1+(n-1)=n,
OBn
=(n,n)
.(9分)
(3)SAnOBn=
1
2
|
OAn
||
OBn
|sin
π
4
=
1
2
•5•(
4
5
)n-1
2
n•
2
2
=
25n
8
•(
4
5
)n
,(11分)
tn=
25n
8
•(
4
5
)n
,当n≥2时,tn-tn-1=
25n
8
•(
4
5
)n-
25(n-1)
8
•(
4
5
)n-1
=
125
128
•(
4
5
)n(5-n)

∴1≤n≤4时,{tn}是递增数列,n≥6时,{tn}是递减数列,t1<t2<t3<t4=t5>t6>t7>…>tn>…,
(SAnOBn)max=t4=t5=
128
25
点评:本题考查点A2,B1的坐标的求法,考
OAn
OBn
的坐标的求法,考查△AnOBn面积的最大值的求法,是中档题,解题时要认真审题,注意数列和向量知识的综合应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网