题目内容
定义运算a※b为a※b=如1※2=1,则函数f(x)=sin x※cos x的值域为 .
[-1,]
若实数x,y满足x2+y2+xy=1,则x+y的最大值是 .
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
当函数y=sin x-cos x(0≤x<2π)取得最大值时,x= .
已知函数f(x)=(2cos2x-1)sin 2x+cos 4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.
M、N是曲线y=πsin x与曲线y=πcos x的两个不同的交点,则|MN|的最小值为( )
(A)π (B)π (C)π (D)2π
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=( )
(A)2 (B)4 (C)6 (D)8
过双曲线C: -=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为 .
若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
(A) (B) (C) (D)