题目内容

20.已知命题p:方程$\frac{x^2}{2m}-\frac{y^2}{m-1}$=1表示焦点在y轴上的椭圆;命题q:双曲线$\frac{y^2}{5}-\frac{x^2}{m}$=1的离心率e∈(1,2),若p∨q是真命题,求实数m的取值范围.

分析 利用椭圆与双曲线的标准方程及其性质,即可得出m的取值范围,再利用复合命题真假的判定方法即可得出.

解答 解:将方程$\frac{x^2}{2m}-\frac{y^2}{m-1}=1$改写为$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$,只有当1-m>2m>0,
即$0<m<\frac{1}{3}$时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于$0<m<\frac{1}{3}$;
因为双曲线$\frac{y^2}{5}-\frac{x^2}{m}=1$的离心率e∈(1,2),
所以m>0,且1$<\frac{5+m}{5}<4$,解得0<m<15,所以命题q等价于0<m<15.
p或q为真,则0<m<15.

点评 本题考查了椭圆与双曲线的标准方程及其性质、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网