题目内容

12.过抛物线y2=4x的焦点F作互相垂直的弦AC,BD,则点A,B,C,D所构成四边形的面积的最小值为(  )
A.16B.32C.48D.64

分析 设直线AB的方程为y=k(x-1),由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y得k2x2-(2k2+4)x+k2=0,由弦长公式得|AB|,以-$\frac{1}{k}$换k得|CD|,故所求面积为S=$\frac{1}{2}$|AB||CD|=8(${k}^{2}+\frac{1}{{k}^{2}}$+2)即可求最值.

解答 解:设直线AB的斜率为k(k≠0),则直线CD的斜率为-$\frac{1}{k}$,
直线AB的方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y得k2x2-(2k2+4)x+k2=0,
${x}_{1}+{x}_{2}=\frac{{2k}^{2}+4}{{k}^{2}},{x}_{1}{x}_{2}=1$,
由弦长公式得|AB|=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{1+{k}^{2}}}{{k}^{2}}$×$\sqrt{1+{k}^{2}}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$,
以-$\frac{1}{k}$换k得|CD|=4k2+4,
∵AB、CD互相垂直
故所求面积为S=$\frac{1}{2}$|AB||CD|=8(${k}^{2}+\frac{1}{{k}^{2}}$+2)≥8(2$\sqrt{{k}^{2}•\frac{1}{{k}^{2}}}+2$)≥32(当k2=1时取等号),
即面积的最小值为32.故选:B

点评 题考查抛物线方程的求法,考查四边形面积的最小值的求法,考查弦长的表达式的求法,解题时要认真审题,注意弦长公式的灵活运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网