题目内容

设数列{an}的前n项积为Tn,Tn=2
n(n+1)
2
(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=anlog2an,求{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得Tn=a1×a2×a3×…×an=2
n(n+1)
2
,Tn-1=a1×a2×a3×…×an-1=2
n(n-1)
2
,由此能求出an=2n
(2)由bn=anlog2an=n•2n,利用错位相减法能求出{bn}的前n项和Sn
解答: 解:(1)∵数列{an}的前n项积为Tn,Tn=2
n(n+1)
2
(n∈N*),
∴Tn=a1×a2×a3×…×an=2
n(n+1)
2
,①
Tn-1=a1×a2×a3×…×an-1=2
n(n-1)
2
,②
,得:an=2
n(n+1)
2
-
n(n-1)
2
=2n
∴an=2n
(2)∵bn=anlog2an=n•2n
∴Sn=1•2+2•22+3•23+…+n•2n,①
2Sn=1•22+2•23+3•24+…+n•2n+1,②
①-②得:-Sn=2+22+23+…+2n+n•2n+1
=
2(1-2n)
1-2
-n•2n+1
=-2+(1-n)•2n+1
∴Sn=(n-1)•2n+1+2.
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网