题目内容
(1)求证:
| EF |
| AP |
| AD |
(2)求证:EF⊥CD.
考点:向量的数量积判断向量的共线与垂直
专题:
分析:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系A-xyz,设AB=2a,BC=2b,PA=2c,求出
=(0,b,c),
=(0,0,2c),
=(0,2b,0),从而
=
+
,由此能证明
,
,
共面.
(2)求出
=(-2a,0,0),
=(0,b,c),由
•
=0,能证明CD⊥EF.
| EF |
| AP |
| AD |
| EF |
| 1 |
| 2 |
| AP |
| 1 |
| 2 |
| AD |
| EF |
| AP |
| AD |
(2)求出
| CD |
| EF |
| CD |
| EF |
解答:
证明:(1)如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,
建立空间直角坐标系A-xyz,
设AB=2a,BC=2b,PA=2c,
则:A(0,0,0),B(2a,0,0),C(2a,2b,0),
D(0,2b,0),P(0,0,2c),
∵E为AB的中点,F为PC的中点,
∴E(a,0,0),F(a,b,c),
∵
=(0,b,c),
=(0,0,2c),
=(0,2b,0),
∴
=
+
,
∴
,
,
共面.
(2)∵
=(-2a,0,0),
=(0,b,c),
∴
•
=(-2a,0,0)•(0,b,c)=0,
∴
⊥
,∴CD⊥EF.
建立空间直角坐标系A-xyz,
设AB=2a,BC=2b,PA=2c,
则:A(0,0,0),B(2a,0,0),C(2a,2b,0),
∵E为AB的中点,F为PC的中点,
∴E(a,0,0),F(a,b,c),
∵
| EF |
| AP |
| AD |
∴
| EF |
| 1 |
| 2 |
| AP |
| 1 |
| 2 |
| AD |
∴
| EF |
| AP |
| AD |
(2)∵
| CD |
| EF |
∴
| CD |
| EF |
∴
| CD |
| EF |
点评:本题考查三个向量共面的证明,考查两直线垂直的证明,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目
下列命题中,真命题是( )
| A、?x∈(3,+∞),x2>2x+1 | ||
B、?x0∈[0,
| ||
| C、?x0∈R,x02+x0=-1 | ||
D、?x∈(
|