题目内容

8.已知函数y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函数的最小正周期为π,最大值为2,且过(0,1)点,
(1)求函数的解析式;
(2)求函数的单调递减区间.

分析 (1)根据函数的周期,最值过定点,求出A,ω和φ的值即可,
(2)结合三角函数的单调性进行求解即可.

解答 解:(1)∵函数的最小正周期为π,最大值为2,
∴A=2,T=$\frac{2π}{ω}=π$,即ω=2,
则函数y=2sin(2x+φ),
∵函数过(0,1)点,
∴2sinφ=1,即sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
则$y=2sin(2x+\frac{π}{6})$.
(2)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
即函数的单调递减区间为为$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$.

点评 本题主要考查三角函数解析式的求解,结合条件求出A,ω和φ的值是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网