题目内容

11.在数列{an}中,${S_n}=\frac{2}{n+1}$
(1)求数列{an}的通项公式an
(2)设${b_n}=\frac{S_n}{n}$,求数列{bn}的前n项和Tn

分析 (1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1,由此求得数列{an}的通项公式an
(2)利用裂项相消求和法进行解答.

解答 解:(1)∵在数列{an}中,${S_n}=\frac{2}{n+1}$,
∴当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=$\frac{2}{n+1}$-$\frac{2}{n}$=-$\frac{2}{n(n+1)}$.
综上所述,an=$\left\{\begin{array}{l}{1(n=1)}\\{-\frac{2}{n(n+2)}(n≥2)}\end{array}\right.$;
(2)∵${S_n}=\frac{2}{n+1}$,${b_n}=\frac{S_n}{n}$,
∴${b_n}=\frac{S_n}{n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Tn=b1+b2+b3+…+bn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.(n∈Z+).

点评 本题主要考查数列通项公式和前n项和的求解,利用裂项相消求和法是解决(2)题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网