题目内容
11.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,则求{an}的通项公式an=$\frac{2}{{{3^n}-1}}$.分析 由题意可得$\frac{2}{{a}_{n+1}}$+1=3($\frac{2}{{a}_{n}}$+1),继而得到{$\frac{2}{{a}_{n}}$+1}是以3为首项,以3为公比的等比数列,即可求出答案.
解答 解:∵an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,
∴an+1an+3an+1=an,
∴$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}}$+1,
∴$\frac{2}{{a}_{n+1}}$=$\frac{6}{{a}_{n}}$+2
∴$\frac{2}{{a}_{n+1}}$+1=3($\frac{2}{{a}_{n}}$+1),
∵a1=1,
∴$\frac{2}{{a}_{1}}$+1=3,
∴{$\frac{2}{{a}_{n}}$+1}是以3为首项,以3为公比的等比数列,
∴$\frac{2}{{a}_{n}}$+1=3n,
∴an=$\frac{2}{{3}^{n}-1}$,
故答案为:$\frac{2}{{{3^n}-1}}$
点评 本题考查数列的通项公式,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
19.若曲线C1:y=x2与曲线C2:y=aex(a>0)至少存在两个交点,则a的取值范围为( )
| A. | [$\frac{8}{{e}^{2}}$,+∞) | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | (0,$\frac{4}{{e}^{2}}$] |
16.在等差数列{an}中,a1=-2 012,其前n项和为Sn,若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,则S2012的值等于( )
| A. | -2 011 | B. | -2 012 | C. | -2 010 | D. | -2 013 |
1.已知等差数列{an}的前n项和为Sn,且S4=6,2a3-a2=6,则a1等于( )
| A. | -3 | B. | -2 | C. | 0 | D. | 1 |