题目内容
已知cos(x-
)=
,x∈(0,
),求sin(x-
).
| π |
| 6 |
| 2 |
| 3 |
| π |
| 2 |
| π |
| 3 |
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由给出的角x的范围得到x-
的范围,再结合cos(x-
)=
进一步确定x-
为第一象限角,求出其正弦值,把x-
拆角后利用两角差的正弦求得答案.
| π |
| 6 |
| π |
| 6 |
| 2 |
| 3 |
| π |
| 6 |
| π |
| 3 |
解答:
解:∵x∈(0,
),∴-
<x-
<
,
又cos(x-
)=
,且
<
,
∴x-
∈(0,
),
则sin(x-
)=
=
=
.
∴sin(x-
)=sin[(x-
)-
]
=sin(x-
)cos
-cos(x-
)sin
=
×
-
×
=
.
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
又cos(x-
| π |
| 6 |
| 2 |
| 3 |
| 2 |
| 3 |
| ||
| 2 |
∴x-
| π |
| 6 |
| π |
| 3 |
则sin(x-
| π |
| 6 |
1-cos2(x-
|
1-(
|
| ||
| 3 |
∴sin(x-
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
=sin(x-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| ||
| 3 |
| ||
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 6 |
点评:本题考查了两角和与差的三角函数,训练了利用拆角配角的方法求三角函数的值,关键是对角的范围的思考,是中档题.
练习册系列答案
相关题目
等差数列{an}中,a1=7,a3=3,前n项和为Sn,则n=( )时,Sn取到最大值.
| A、4或5 | B、4 | C、3 | D、2 |