题目内容

设函数f(x)满足f(x)=1+f(
1
3
)log3x,则f(3)=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(3)=1+f(
1
3
)log33=1+f(
1
3
),令x=
1
3
,得f(
1
3
)=1+f(
1
3
)log3
1
3
=1-f(
1
3
),由此能求出f(3).
解答: 解:∵f(x)=1+f(
1
3
)log3x,
∴f(3)=1+f(
1
3
)log33=1+f(
1
3
),
令x=
1
3
,得f(
1
3
)=1+f(
1
3
)log3
1
3
=1-f(
1
3
),
解得f(
1
3
)=
1
2

∴f(3)=1+f(
1
3
)=1+
1
2
=
3
2

故答案为:
3
2
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网