题目内容
已知数列{an},a1=1,前n项和Sn满足nSn+1-(n+3)Sn=0,
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=4(
)2,求数列{(-1)nbn}的前n项和Tn;
(Ⅲ)设Cn=2n(
-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=4(
| an |
| n |
(Ⅲ)设Cn=2n(
| n |
| an |
考点:数列的求和,数列的函数特性,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得Sn,最后利用an=Sn-Sn-1求得答案.
(Ⅱ)根据(Ⅰ)中an,求得bn,设出Cn,分n为偶数和奇数时的Tn.
(Ⅲ)根据数列为递减数列,只需满足Cn+1-Cn<0,求得
-
的最大值,即可求得λ的范围.
(Ⅱ)根据(Ⅰ)中an,求得bn,设出Cn,分n为偶数和奇数时的Tn.
(Ⅲ)根据数列为递减数列,只需满足Cn+1-Cn<0,求得
| 4 |
| n+2 |
| 2 |
| n+1 |
解答:
解:(Ⅰ)由已知
=
,且S1=a1=1,
当n≥2时,
Sn=S1•
•
…•
=1•
•
•…•
=
,
S1也适合,
当n≥2时,an=Sn-Sn-1=
,且a1也适合,
∴an=
.
(Ⅱ)bn=4(
)2=(n+1)2,设Cn=(-1)n(n+1)2,
当n为偶数时,∵Cn-1+Cn=(-1)n-1•n2+(-1)n•(n+1)2=2n+1,
Tn=(C1+C2)+(C3+C4)+…(Cn-1+Cn)=5+9+…+(2n-1)=
=
,
当n为奇数时,Tn=Tn-1+Cn=
-(n+1)2=-
,且T1=C1=-4也适合.
综上得Tn=
(Ⅲ)∵Cn=2n(
-λ),使数列{Cn}是单调递减数列,
则Cn+1-Cn=2n(
-
-λ)<0,对n∈N*都成立,
则(
-
)max<λ,
∵
-
=
=
,
当n=1或2时,(
-
)max=
,
∴λ>
.
| Sn+1 |
| Sn |
| n+3 |
| n |
当n≥2时,
Sn=S1•
| S2 |
| S1 |
| S3 |
| S2 |
| Sn |
| Sn-1 |
| 4 |
| 1 |
| 5 |
| 2 |
| n+2 |
| n-1 |
| n(n+1)(n+2) |
| 6 |
S1也适合,
当n≥2时,an=Sn-Sn-1=
| n(n+1) |
| 2 |
∴an=
| n(n+1) |
| 2 |
(Ⅱ)bn=4(
| an |
| n |
当n为偶数时,∵Cn-1+Cn=(-1)n-1•n2+(-1)n•(n+1)2=2n+1,
Tn=(C1+C2)+(C3+C4)+…(Cn-1+Cn)=5+9+…+(2n-1)=
| ||
| 2 |
| n(n+3) |
| 2 |
当n为奇数时,Tn=Tn-1+Cn=
| (n-1)(n+2) |
| 2 |
| n2+3n+4 |
| 2 |
综上得Tn=
|
(Ⅲ)∵Cn=2n(
| n |
| an |
则Cn+1-Cn=2n(
| 4 |
| n+2 |
| 2 |
| n+1 |
则(
| 4 |
| n+2 |
| 2 |
| n+1 |
∵
| 4 |
| n+2 |
| 2 |
| n+1 |
| 2n |
| (n+1)(n+2) |
| 2 | ||
n+3+
|
当n=1或2时,(
| 4 |
| n+2 |
| 2 |
| n+1 |
| 1 |
| 3 |
∴λ>
| 1 |
| 3 |
点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用an=Sn-Sn-1一定要a1对进行验证.
练习册系列答案
相关题目
已知集合U={0,1,2,3,4},A={x|x2-2x=0},则∁UA=( )
| A、{1,2,3} |
| B、{0,1,3,4} |
| C、{1,3,4} |
| D、{0,3,4} |
已知集合A={x|0<x<2},B={x|y=ln(x2-1)},则A∪B=( )
| A、(0,1) |
| B、(1,2) |
| C、(-∞,-1)∪(0,+∞) |
| D、(-∞,-1)∪(1,+∞) |