题目内容

13.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为(  )
A.-$\frac{{5\sqrt{6}}}{18}$B.-$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由此利用向量法能求出异面直线AE与BF所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,
A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),
$\overrightarrow{AE}$=(-2,1,2),$\overrightarrow{BF}$=(-2,0,1),
设异面直线AE与BF所成角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{AE}•\overrightarrow{BF|}}{|\overrightarrow{AE}|•|\overrightarrow{BF}|}$=$\frac{6}{3\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$.
∴异面直线AE与BF所成角的余弦值为$\frac{2\sqrt{5}}{5}$.
故选:D.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网