题目内容
求数列
,
,…,
的前n项和.
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+…+(n+1) |
考点:数列的求和
专题:等差数列与等比数列
分析:由
=
=2(
-
),利用裂项求和法能求出数列
,
,…,
的前n项和.
| 1 |
| 1+2+…+(n+1) |
| 1 | ||
|
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+…+(n+1) |
解答:
解:∵
=
=
=2(
-
),
∴数列
,
,…,
的前n项和为:
Sn=2(
-
+
-
+…+
-
)
=2(
-
)
=
.
| 1 |
| 1+2+…+(n+1) |
| 1 | ||
|
=
| 2 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴数列
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+…+(n+1) |
Sn=2(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=2(
| 1 |
| 2 |
| 1 |
| n+2 |
=
| n |
| n+2 |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目