题目内容
7.若函数$f(x)=|sinx+\frac{2}{3+sinx}+t|(x,t∈R)$最大值记为g(t),则函数g(t)的最小值为$\frac{3}{4}$.分析 化简sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,从而可得0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,区间[0,$\frac{3}{2}$]的中点值为$\frac{3}{4}$,故讨论t与$\frac{3}{4}$的大小,从而求得g(t)=fmax(x)=$\left\{\begin{array}{l}{t,t≥\frac{3}{4}}\\{\frac{3}{2}-t,t<\frac{3}{4}}\end{array}\right.$,从而求值.
解答 解:∵sinx+$\frac{2}{3+sinx}$
=sinx+3+$\frac{2}{3+sinx}$-3,
∵-1≤sinx≤1,
∴2≤sinx+3≤4,
∴3≤sinx+3+$\frac{2}{3+sinx}$≤$\frac{9}{2}$,
∴0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,
∴g(t)=fmax(x)=$\left\{\begin{array}{l}{t,t≥\frac{3}{4}}\\{\frac{3}{2}-t,t<\frac{3}{4}}\end{array}\right.$,
∴当t=$\frac{3}{4}$时,函数g(t)有最小值为$\frac{3}{4}$;
故答案为;$\frac{3}{4}$.
点评 本题考查了对勾函数的应用及分段函数的应用,同时考查了正弦函数的性质及整体思想与分类讨论的思想.
练习册系列答案
相关题目
2.过双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆C2:x2+y2=a2的切线,设切点为M,延长FM交双曲线C1于点N,若点M为线段FN的中点,则双曲线C1的离心率为( )
| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$+1 | D. | $\frac{\sqrt{5}+1}{2}$ |
12.设 m、n是两条不同的直线,α是一个平面,则下列命题正确的是( )
| A. | 若m∥n,n?α,则m∥α | B. | 若m∥α,n?α,则m∥n | C. | 若m⊥n,n?α,则m⊥α | D. | 若m⊥α,m∥n,则n⊥α |
19.在正四棱柱ABCD-A1B1C1D1中,AB=2$\sqrt{2}$,AA1=4,E,F分别为棱AB,CD的中点,则三棱锥B1-EFD1的体积为( )
| A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{16\sqrt{3}}{3}$ | C. | $\frac{16}{3}$ | D. | 16 |