题目内容
已知四个数成等差数列,顺次加上1,1,3,9后成等比数列,则这四个数的和为 .
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:设四个数为a,a+d,a+2d,a+3d,由题意知a+1,a+1+d,a+3+2d,a+9+3d成等比数列,令t=a+1,则t,t+d,t+2+2d,t+8+3d成等比数列,则
=
=
=
,由此能求出四个数的和.
| t+d |
| t |
| t+2+2d |
| t+d |
| t+8+3d |
| t+2+2d |
| 3t+10+6d |
| 3t+2+3d |
解答:
解:设四个数为a,a+d,a+2d,a+3d,
由题意知a+1,a+1+d,a+3+2d,a+9+3d成等比数列,
令t=a+1,则t,t+d,t+2+2d,t+8+3d成等比数列,
∴
=
=
=
,
整理,得3t2+10t+6td=3t2+2t+3td+3td+2d+3d2,
解得2t=d2,
∴2d+3d2=4d2,解得d=0或d=2,
d=0,t=0,不合题意,舍去,
∴d=2,t=2,a=t-1=1,
∴四个数为1,3,5,7,
∴四个数的和=4a+6d=16.
故答案为:16.
由题意知a+1,a+1+d,a+3+2d,a+9+3d成等比数列,
令t=a+1,则t,t+d,t+2+2d,t+8+3d成等比数列,
∴
| t+d |
| t |
| t+2+2d |
| t+d |
| t+8+3d |
| t+2+2d |
| 3t+10+6d |
| 3t+2+3d |
整理,得3t2+10t+6td=3t2+2t+3td+3td+2d+3d2,
解得2t=d2,
∴2d+3d2=4d2,解得d=0或d=2,
d=0,t=0,不合题意,舍去,
∴d=2,t=2,a=t-1=1,
∴四个数为1,3,5,7,
∴四个数的和=4a+6d=16.
故答案为:16.
点评:本题考查数列中四项和的求法,是中档题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关题目